Competing Approaches to Weak Crossover in Algonquian Languages

VIVIAN LIN
University of Wisconsin, Madison

WHY WEAK CROSSOVER MATTERS

In trying to understand the syntax of wh-questions in a given language, one of the first questions to be addressed is how question words arrive at their surface structure positions. Are they base generated there, or do they end up there as the result of a movement operation? One of the classic diagnostics for movement is Weak Crossover (WCO), a configuration that, for reasons that are still poorly-understood, is ruled out by the grammar. A typical WCO configuration is schematized in (1a): an operator (either a quantifier or a wh-operator) undergoes A'-movement over a coindexed pronoun, resulting in a variable (i.e., the trace of the moved operator) being coindexed with a pronoun on its left.

(1a) * OP_i ...pronoun_i ...variable_i

(1b) * Who_i does his_i mother love t_i?

(1c) Who_i t_i loves his_i mother?

1. I would like to thank members of the audience of the 36th Algonquian Conference, in particular Ives Goddard, Richard Rhodes, and Philip LeSourd, for their comments and observations which brought to my attention issues regarding the data that will need to be addressed in future work.

I would also like to thank two reviewers who raised very constructive questions about the interpretation and analyses of the data summarized in this paper. Since the data have all been cited from the published studies of other researchers, these questions will have to be deferred until further research can be conducted.

Finally, thanks also to Monica Macaulay and Rebecca Shields for their participation in an Algonquian Reading Group at UW-Madison, which provided the impetus for this work.

The difference between the grammaticality of (1b) and (1c) shows that the operator (*who*, in these examples) must actually "cross over" the co-indexed pronoun *his* for the result to be ungrammatical.

If a language allows (i.e., treats as grammatical) *wh*-constructions that fit the structural description for WCO, then the language apparently allows WCO violations. Understanding the status of WCO in Algonquian languages is crucial for understanding the syntax of *wh*-questions in those languages because it appears that they lack WCO effects. Dahlstrom (1986) first pointed this out for Cree on the basis of data like (2):

\[(2) \text{awína } ê-sâkihikot omâ mâwa? (Dahlstrom 1986:57)\]
\[\text{who love-obv-3 his-mother-obv}\]
\[\text{‘who-prox\textsubscript{i} does his-prox\textsubscript{i} mother-obv love?’}\]

If Cree, and more generally, Algonquian languages, truly lack WCO effects, then an entire class of evidence in favor of a movement analysis of *wh*-questions is lost. Furthermore, if we assume that WCO is a universal constraint, then the apparent lack of WCO in Algonquian languages may be interpreted as evidence that no movement is involved in the relevant constructions. As an example, Blain (1997) draws the conclusion that the lack of WCO effects in Plains Cree results from the lack of *wh*-movement.\(^3\)

Even though this conclusion seems reasonable, there are researchers who still argue that *wh*-movement exists in various Algonquian lan-

2. Although (2) only involves *wh*-movement, Dahlstrom (1986) shows that WCO effects are missing more generally in Cree, giving examples with quantificational antecedents (e.g., *every boy*) moving over a coindexed pronoun. Similar examples will be discussed below.

All examples, glosses and translations are taken directly from the references cited, unless otherwise indicated. As one reviewer notes, a number of the examples cited here fail to resemble the types of constructions normally found in textual sources. This is not entirely surprising, since most of the data stem from elicitation designed to obtain both positive and negative data, the latter of which in particular are rarely found in textual materials since they are never produced spontaneously. In this context, it is important to note that the summaries and comparisons presented in this paper assume that the data cited have been accurately interpreted and analyzed. Whether these assumptions are valid remains to be seen. In part, this will require replication of the cited data through additional fieldwork.

3. Note however that Blain (1997) still utilizes a movement approach in her analysis of *wh*-constructions in Plains Cree. According to Blain, *wh*-constructions are bi-clausal and involve movement of a non-quantificational null operator (which does not trigger WCO violations).
languages. For those who want to maintain this hypothesis, the lack of WCO effects must be explained. This paper compares two different accounts for the lack of WCO effects: one proposed in Brittain 2001a, the other in Bruening 2001. Both accounts assume that the WCO constraint is universal. However, Brittain, whose work is primarily based on data from the Cree-Montagnais-Naskapi language complex, suggests that the WCO constraint is violable, and may be overridden by other constraints, whereas Bruening, whose worked is primarily based on data from Passamaquoddy, suggests that WCO configurations are in fact only apparent WCO configurations, and that the use of WCO as a diagnostic for wh-movement may be obscured by intervening factors.

WCO EXISTS IN ALGONQUIAN AS A VIOLABLE CONSTRAINT

According to Brittain (2001a), the WCO constraint holds in Algonquian languages, but can be overridden by the One Proximate pro per Derivation Condition, defined in (3) and illustrated in (4):

(3) One Proximate pro per Derivation Condition (OPPD)
Wherever a proximate wh-phrase c-commands a proximate pro, these are necessarily interpreted as co-referent in order to avoid having more than one proximate referent per derivation. (Brittain 2001:179)

(4) \(wh\text{-prox}_{i} ... pro\text{-prox}_{i}^{\ast}j\) (Brittain 2001a:180)

Under Brittain’s analysis, wh-movement can create WCO configurations in Algonquian languages. However, such WCO violations are “saved” by the OPPD, which requires coreference between proximate phrases. In the following examples from Western Naskapi and Plains Cree, proximate wh-objects are extracted over subjects containing a proximate pro serving as the possessor of the possessed NP:

(5a) Western Naskapi: wh-object extraction

\[A\text{w}an\ k\text{-wa}pim\text{i}kut\ uta\text{wa}sima?\] (Brittain 2001:184)
\[aw\text{an} k\text{-wa}pim\text{-iku}\text{-t} ut-aw\text{a}s-\text{i}m-a\]
\[\text{who}\ [a]\text{-comp+Past-see(TA)-CIN.O:3/S:4 Poss.3-child-poss-obv}\]
\[‘Who_i did his_i child see?’ [ungrammatical in English]\

4. The version of OPPD presented here is from Brittain 2001a. A slightly updated version appears in Brittain 2001b, where it is changed to the One Proximate Referent per Derivation (OPRD) Condition. Since the data discussed in Brittain 2001a and 2001b do not differ significantly, I employ the earlier version of the theory for now.
As illustrated by the schema in (5b) and (6b), the WCO predicts that these sentences should be ungrammatical. However, in order to obey the OPPD constraint, the moved \textit{wh}-phrases and the \textit{pro} possessors must be co-indexed. The grammaticality of (5) and (6) suggest that the WCO constraint may be violated in order to satisfy the requirements of the OPPD constraint.

Since the effects of the WCO constraint can be avoided under Brittain’s proposal, we must ask whether the WCO constraint has any force at all in Algonquian languages. To put it another way, are there cases where WCO violations cannot be rescued by the OPPD? Brittain (2001a) cites an example from Blain 1997 that involves obviative instead of proximate arguments and thus precludes application of the OPPD constraint:

In example (7), an obviative \textit{wh}-object is extracted over a subject that consists of a relative clause containing an obviative \textit{pro}. We can explain the ungrammaticality of coreference between the \textit{wh}-phrase and the obviative argument in the relative clause if we assume that WCO does hold in Algonquian languages. Without the WCO constraint, it is unclear why (7) should be ungrammatical.

The WCO constraint and the OPPD constraint thus stand in a ranked relation to one another: the OPPD outranks the WCO constraint. The
COMPETING APPROACHES TO WEAK CROSSOVER 227

WCO constraint may therefore be violated if the OPPD is satisfied. The OPPD does more than just “rescue” WCO violations, however. Instead of simply allowing coindexation between an operator and a pronoun that has been crossed over, the OPPD actually requires coreference between the two, as shown in (8):

(8a) Western Naskapi: wh-object extraction over subject relative clause
Awan kâ-suwaâyimikut nápáwa mâywâyihtât? (Brittain 2001a:187)

awan kâ-suwaâyim-iku-t
who [a]-comp+Past-kiss(TA)-CIN.O:3/S:4

nápâw-a mâywâyihtâ-t
man-obv like(TA).CIN-O:4/S:3
‘Whoj did the man shej/*: likes kiss?’

(8b) [who-prox]j [DP pro-obv [CP she-proxj/*j likes him-obv]] kissed t1]

(based on Brittain 2001a:187)

Note that on the reading in which who and the pro interpreted as ‘she’ are coreferent, (8) actually contains a WCO violation, yet the sentence is grammatical. In fact, if who and the relevant pro were disjoint in reference, the sentence would actually be ungrammatical, despite the fact that the WCO configuration would no longer exist. The ungrammaticality of the disjoint reading shows us that, at least based on the given data, the OPPD constraint may not be violated.

The interaction between the WCO and OPPD constraints can be clearly captured in an Optimality Theory (OT)-style tableau, as in (9), using the examples from (7) and (8). (Although Brittain (2001a) does not utilize tableaux in her discussion, they are consistent with her characterization of WCO as a violable constraint.) Candidates (a) and (b) represent different coindexation possibilities for (7), and candidates (c) and (d) represent different coindexation possibilities for (8).

With respect to (7), (9b) violates neither the OPPD nor the WCO constraint. Thus, the reading associated with (9b) is the winning candidate. (9a) contains a fatal violation of the WCO constraint. Like (9a), (9c) also contains a WCO violation; however, (9c) is still chosen as the winning candidate for the interpretation of (8) since the alternative candidate, (9d), fatally violates the OPPD, which is a higher-ranked constraint.
Brittain’s analysis of WCO in Algonquian languages successfully captures the given data. It accounts for the apparent lack of WCO effects, which in turn allows her to maintain her hypothesis that wh-questions involve actual wh-movement in Algonquian languages. However, Brittain’s analysis depends upon a model of syntax that allows for violable constraints. In the next section, we turn to an account for the (apparent) lack of WCO effects which does not require violable constraints.

WCO EXISTS IN ALGONQUIAN, BUT IS OBSCURED BY THE INVERSE

Bruening’s (2001) account for the apparent lack of WCO effects in Algonquian languages is based on a correlation that he notes between cases of missing WCO effects and inverse morphology. He provides examples such as (10) and (11) from Passamaquoddy (with the inverse marker -iht in boldface).
Inverse morphology (−iko or −iku) similarly appears in examples (2) and (5-6), all of which are unexpectedly grammatical because they appear to be WCO configurations.

Bruening's explanation for the observed correlation lies in his analysis of the inverse. He proposes that constructions with inverse voice (i.e., any time the object outranks the subject on the person hierarchy) involve A-movement of the logical object to a position above the logical subject. He proposes a feature system involving the syntactic feature [+proximate] (along with a related functional head) to account for the movement. Specifically, a functional head (H) outside of the vP checks the [+proximate] feature, whether it appears on the logical subject or on the logical object. If the logical object bears the [+proximate] feature, inverse movement is triggered since the object must raise above the subject to reach HP; this is schematized in (12):

\[
\begin{align*}
[HP \text{Object}^{+\text{Prox}}] & \rightarrow [vP \text{Subject} [vP \text{Verb t}]]
\end{align*}
\]

By treating the proximate-obviative distinction as a morphological reflex of feature-based, syntactic agreement, Bruening essentially treats obviation as parallel to Case (setting aside sensitivity to discourse factors).

The A-movement analysis that Bruening proposes for the inverse...
voice interacts with his scope generalization for Passamaquoddy:

(13) Passamaquoddy scope is fixed by c-command relations among A-positions. (Bruening 2001:137)

Bruening’s scope generalization makes two predictions: (1) no inverse scope will be possible in the direct voice (i.e., objects should not be able to take scope over subjects), and (2) inverse scope should be possible in the inverse voice (i.e., objects should be able to take scope over subjects, since they have undergone A-movement to a position above the subject). Bruening provides the examples in (14) and (15) as evidence for lack of inverse scope in the direct voice: (14) can only be interpreted as referring to a single girl,\(^8\) and (15) does not allow the quantified object "everyone" to bind a variable in the subject, "he".\(^9\)

(14) Direct: no inverse scope (Bruening 2001:111)

Kinaq op pesq pilsgehsis nomyiat-sopon yatte wen.

at.least Emph one girl see-3Conj-Pret each someone

‘At least one girl saw each person.’ [*each > at least one]

(15) Direct: no variable binding (from object into subject) (Bruening 2001:112)

*Skitap musqitaham-ac-il ‘koti-tqon-a-l psi=te wen-il

man hate-3Conj-PartObv 3-Fut-arrest-Dir-Obv all=Emph someone-Obv

*A man that he; hates will arrest everyone;

7. Brittain (2001a) similarly proposes a feature-based system for capturing the proximate-obviative distinction and direct-versus-inverse-voice morphology. However, under her approach, the same syntactic head always checks the features of the same NPs (e.g., AgrO always checks the features of the logical object, AgrS always checks the features of the logical subject), and no syntactic distinction is made in the positioning of the arguments relative to one another in the tree. Furthermore, whereas for Bruening (2001) the theme signs are morphological realizations of agreement on v as determined by both the subject and the object (see Bruening 2001:112-113 for discussion), for Brittain (2001a) the theme signs are morphological realizations of object agreement at AgrO.

8. Philip LeSourd (personal communication) points out that the morpheme op in (14) should be glossed as the conditional enclitic, and that (14) is more accurately translated as ‘If only at least one girl had seen each person.’

9. Some may be tempted to attribute the ungrammaticality of (15) to an obviation clash. As LeSourd notes (personal communication), there is an obviation clash on ‘man’, which is proximate in the matrix clause but obviative in the relative clause. However, LeSourd also points out (through the following example which contains a similar mismatch on ‘deer’), that there cannot be a general ban on this type of obviation clash:

Komac kinkil not otuhk [n-tatat nehpah-a-c-il].

very.much be.big-(3) that.PROX deer.PROX 1-father kill-DIR-3AN-OBV.SG

‘That deer that my father killed is very big.’
In contrast, Bruening’s examples in (16) and (17) show that inverse scope is possible in the inverse: in (16), the object *yatte wen* ‘each one’ is able to take scope over the subject *piluweya-l nucitqonkelic-il* ‘different policeman’ (so that policemen may vary for each person). According to Bruening’s analysis, since the object *yatte wen* is proximate, it undergoes A-movement to a position above the subject, thus allowing for the inverse scope reading. Similarly, in (17), the object *psi-te wen* ‘everyone’ is able to bind the variable ‘his’ in the subject *wikuwoss-ol* ‘his mother’, again because the object is proximate and undergoes A-movement to a position above the subject.

(16) Inverse: allows for inverse scope (Bruening 2001:117)

\[Yatte \text{wen } 'kisi-tqon-ku-l \text{ piluweya-l nucitqonkelic-il.} \]

each someone 3-Perf-arrest-Inv-Obv different-Obv policeman-PartObv

‘Each one was arrested by a different policeman.’ [each > a]

or ‘A different policeman arrested each one.’

(17) Inverse: allows for variable binding (from object into subject) (Bruening 2001:117)

\[Katolu \text{ psi=te wen } 'kosiciy-uku-l \text{ wikuwoss-ol.} \]

of.course all=Emph someone 3-know.TA-Inv-Obv 3.mother-Obv

‘Of course his; mother knows about everyone.’

Crucially, the inverse (i.e., A-movement) allows for changes in scope and binding possibilities. While (17) looks like a WCO configuration (since the quantifier ‘everyone’ is crossing over the pronoun ‘his’), it in fact does not violate the WCO constraint since the relevant crossing movement is A-movement, not A’-movement. In other words, there is no WCO effect in inverse constructions because there is no WCO configuration.

As Bruening points out, if his analysis of the inverse is correct, then previous claims that WCO does not exist in Algonquian languages are flawed, since they all (according to Bruening) rely on examples using inverse voice. Thus, examples like (2), repeated as (18) below, actually

10. In example (16), Bruening most likely used *piluweya-l* ‘different’ in order to help bring out the inverse scope reading. However, while *different* is ambiguous in English, it might not be so in Passamaquoddy. The interpretation of *different* that is relevant for the inverse scope reading is the one indicating dissimilar referents. Philip LeSourd (personal communication) points out that *piluweya-l* only seems to have an alternative interpretation of ‘different’, one meaning ‘novel’ or ‘unusual’. Although this may complicate the interpretation of (16), it does not actually affect the validity of the outcome or its relevance for Bruening’s analysis.
have no bearing on WCO, since the “crossing over” movement involved is A-movement, not A’-movement, as schematized in (19):

(18) \[awiná é-sákhkot omámáwa? \] (Dahlstrom 1986:57)

who love-obv-3 his-mother-obv

‘who-prox₁ does his-prox₁ mother-obv love?’

(19) \[
\begin{array}{c}
\text{A’-movement} \\
\text{(wh-movement)}
\end{array}
\]

A-movement

(wh-movement)

(inverse movement)

If it is the case, then, that the examples commonly cited in the literature as evidence that WCO does not exist in Algonquian languages do not actually contain WCO configurations (because they all involve inverse voice), we must again ask whether or not WCO violations ever arise. Bruening claims that the ungrammaticality of examples like (20) and (21), which involve movement of a wh-argument from an embedded clause to the matrix clause, shows that the WCO constraint does hold:

(20) Long-distance wh-extraction, wh-prox¹¹ (Bruening 2001:113)

*CP Wen-élitahasi-t wikuwoss-ol [CP eli kselom-ot t₁] ?

who IC.think-3Conj 3.mother-Obv C love-2Conj

* ‘Who-prox₁ does his-prox₁ mother think you love t₁?’

(21) Long-distance wh-extraction, wh-obv (Bruening 2001:113)

*CP Wen-il₄ elitahasi-t wikuwoss-ol [CP eli Mali kselom-at/c-il t₁] ?

who-Obv IC.think-3Conj 3.mother-Obv C M. love-3Conj-(PartObv)

* ‘Who-obv₁ does his-prox₁ mother think Mary loves t₁?’

In fact, (21) may be ungrammatical for reasons other than WCO – in particular, ungrammaticality may be the result of an obviation clash (see also (15), and note 9). However, note that (20) is still ungrammatical, even though there is arguably no obviation clash. Furthermore, Brittain’s example from Plains Cree (cited from Blain 1997), given in (7) above, successfully controls for obviation, and provides evidence that WCO effects can arise in Algonquian languages.

11. Philip LeSourd (personal communication) points out that Bruening’s example contains a typo, which has been corrected here in (20) and (21): kselom- ‘love’ was originally spelled kselm- in Bruening 2001. Furthermore, LeSourd notes that (20) may be missing obviative agreement on the matrix verb: elitahasi-li-t.
Bruening’s proposal makes clear predictions regarding what syntactic contexts may trigger WCO effects. Specifically, whenever inverse movement is blocked (due to constraints of the obviation system), and a crossing-over occurs, a WCO violation should be detected. Bruening discusses at least two such contexts. The first involves extraction of inanimate objects. Since inanimate objects cannot be proximate, they will never undergo inverse movement. Thus, extraction of an inanimate wh-object should trigger a WCO violation. This is confirmed by (22):

(22) \textit{wh}-extraction of inanimate object (Bruening 2001:132)

\begin{verbatim}
*Keqsey; pett-aqoso-k [NP not kis-uwikho-k] ti
 what IC.accidentally-burn-3ConjTI Dem Perf-write-3ConjTI
*‘What; did [the one who wrote it,] accidentally burn?’
 [ok as echo question only]
\end{verbatim}

The second context in which WCO is predicted to arise involves extraction of “secondary objects” – that is, objects of AI+O verbs and direct objects of ditransitive verbs. Since objects of AI+O verbs are restricted to 3rd person, they must be obviative if the subject is also 3rd person, in which case they will be unable to undergo inverse movement. Extraction of such objects should therefore trigger a WCO violation, as in (23). Similarly, direct objects of ditransitive verbs are also restricted to 3rd person, and must be ranked lower than the other two arguments of the verb. This precludes them from undergoing inverse movement, which again means that extraction of such objects should trigger a WCO violation, as in (24):

(23) \textit{wh}-extraction of object (AI+O verb) (Bruening 2001:134)

\begin{verbatim}
*Keqseyi [NP not kisi-ht-aq] napisqahma-t ti
 what Dem Perf-make-3ConjTI trip.over.AI+O-3Conj
 ‘What; did the one who made it, trip over?’
\end{verbatim}

(24) Quantifier Raising of direct object (ditransitive verb) (Bruening 2001:135)

\begin{verbatim}
*N-kisi-messunom-uw-a-n-ol psi=te oqitonu-1 kisi-ht-aq-il
 1-Perf-show-App-Dir-N-InanP all=Emph canoe-InanP perf-make-3Conj-PartObv
 ‘I showed the one who made it, every canoe,’
\end{verbatim}

To the extent that Bruening’s analysis of the ungrammaticality of these examples is correct, (22-24) provide yet further evidence that the WCO constraint does hold in Algonquian languages.
COMPARISON AND CONCLUSION

Both Brittain (2001a) and Bruening (2001) are able to maintain their hypotheses that wh-movement does exist in Algonquian languages in spite of the apparent counter-evidence provided by the WCO facts. They resolve the paradox – the existence of wh-movement alongside the absence of WCO effects – by showing that the absence of WCO effects is only apparent. Under Brittain’s analysis, the WCO configuration still exists, but is grammatical due to the higher-ranked OPPD constraint. Under Bruening’s analysis, apparent WCO violations are only apparent: they do not actually involve the WCO configuration. Bruening’s approach allows us to maintain WCO as a hard constraint – in other words (and in contrast to Brittain’s approach), it does not require an OT-model of syntax, with constraints that may be violated.12

Clearly, each approach makes different assumptions regarding the architecture of the grammar and the syntax of Algonquian languages. Deciding between the two based on these differences will prove difficult. It may be more fruitful to ask whether the two approaches make different predictions with respect to the empirical data. In this context, consider how Bruening’s proposals might account for the data in (9a-d). First, (9a) is correctly ruled out as a WCO violation: the object wh-phrase undergoes A’-movement to the front of the sentence (note the lack of the inverse theme sign), crossing over the coindexed pronoun to produce a WCO configuration. In contrast, (9b) is fine since the wh-phrase and pronoun are not coindexed. Second, (9c) is grammatical because it involves inverse movement, and therefore does not meet the description of a WCO environment. (A-movement first raises the object wh-phrase above the subject containing the coindexed pronoun; then the wh-phrase undergoes A’-movement to the Specifier of CP. Crucially, the A’-movement does not cross over the coindexed pronoun.) But what about (9d)? Structurally, (9d) is identical to (9c): under Bruening’s (2001) approach, the object wh-phrase undergoes inverse movement, then wh-movement. Additionally, the wh-phrase and the relevant pronoun are not coindexed. Thus, there is no WCO configuration in (9d), and the sentence should be fine – contrary

12. For a more comprehensive constraint-based treatment of WCO (looking in particular at cross-linguistic differences in WCO effects, although Algonquian languages are not considered), see Bresnan 1998.
to fact. Recall that Brittain correctly rules (9d) out with the OPPD con-
straint. Even for Bruening, it appears that something like the OPPD must
exist. If we add something along the lines of the OPPD constraint to
Bruening’s proposal, both Brittain’s and Bruening’s theories will success-
fully account for the data in (9).

Another place to look for potential data to tease the two proposals
apart is in the inverse construction. Bruening’s syntactic analysis of the
inverse explicitly predicts correlations between the direct-inverse distinc-
tion and scope and binding facts: in the direct voice, the logical object
cannot take scope over the logical subject (given Bruening’s scope gener-
alization in (13)), while in the inverse voice, the subject and the object
may be scopally ambiguous. What Brittain’s predictions might be regard-
ing any correlation between the direct-inverse distinction and scope and
binding facts depends upon what her theory of scope and binding is. As
her proposal stands, it has no bearing on this issue.

Perhaps a more productive direction to pursue, based upon this brief
comparison, is to explore the nature of the OPPD constraint, which seems
to be necessary under either approach. Some of the immediate questions
that come to mind include: (1) What is the size of the domain (Brittain’s
“derivation”) over which the OPPD is evaluated? (2) What counts as
“proximate”? Do morphologically marked versus unmarked proximates
behave differently with respect to the OPPD? (3) Within the context of an
OT-style approach to syntax, is the OPPD constraint violable? and, more
generally, (4) Does the OPPD vary across Algonquian languages?

As a starting point, example (20), repeated as (25), appears to have
crucial bearing on these questions:

(25) Long-distance \(wh\)-extraction, \(wh\)-prox(Bruening 2001:113)

\[
\text{[CP } \text{Wen}_i \text{ elihasi-t} \text{ wikuwoss-ol } \text{[CP eli kselom-ot } t_j \text{]]?}
\]

\text{who IC.think-3Conj 3.mother-Obv C love-2Conj}

\text{*'Who-proXj does his-proXj mother think you love } t_j?\text{’}

Recall that under Brittain’s approach, the OPPD constraint outranks the
WCO constraint. The ungrammaticality of (25) suggests that there must
be some constraint ranked higher than the OPPD that can be invoked to
rule out (25). (Note that we cannot simply switch the ordering of the con-
straint ranking, although that would get us the right result in this case:
WCO >> OPPD.) Under Bruening’s approach, (25) is simply ruled out as
a WCO violation.13
The next step is to find other data to help us gain a better understanding of the range and nature of the OPPD.

REFERENCES

13. Unfortunately, (25) may suffer from problems that put into question the interpretation given in Bruening. For example, Ives Goddard (personal communication) suggests that (25) is more correctly parsed as ‘Who, thinks [you love his, mother]?’ This would rule out WCO as the source of ungrammaticality for Bruening. Richard Rhodes (personal communication) suggests that (25) is ruled out by the Possessor Clausemate Constraint, defined in (i):

(i) No clause is grammatical in which two clausemate nominals are in a configuration such that one is coreferent with the possessor of the other and the possessee would control obviation of the coreferent of the possessor in final relations (Rhodes 1990:112)

However, this too depends upon the correct analysis of (25).